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Abstract -. -..

This paper examines the problem of matching corresponding object points in three views
of a scene. The matching problem is a critical step in the recovery of 3-dimensional position
by stereo image processing and has important application in the analysis of particle distribu-

tions and fluid flows. We introduce an algorithm that iteratively searches for all possible pair-
wise matches using trinocular consistency constraints. The algorithm is shown to be equivalent

to a search for edges that belong to all perfect matchings in a bipartite graph that links con-
sistent matches between two views. Three such problems are solved in parallel. An attractive

property of the matching algorithm is its graceful degradation in response to image distortion
and modeling error. Although measurement errors may prevent successful matching, wrong I.

matches can almost always be avoided if the error in the image position of a particle can be
bounded. Thus, noise can cause a loss of acuity but should not cause the introduction of gross 0
misinformation that could result from incorrect matching. Experiments with synthetic particle

images demonstrate that this approach can lead to significantly greater numbers of matches
than algorithms that match in a single direction.
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1. Introduction

Accurate measurement of particle location and motion is important for a diverse assort-

ment of scientific and engineering problems. A particle is a small, compact object such as an

oil droplet, a blood cell, or a piece of dust. Fluid motions can be quantitatively assessed by
tracking particles seeded in flow fields. The three-dimensional distribution of particles at an

instant in time can also give important information about the characteristics of gas and fluid

motions. In this paper we focus on the problem of measuring the location of large numbers of

particles at a snapshot in time using image processing techniques. An extension of the method

to measure particle motions is discussed.

Information about the three-dimensional location of an object can be recovered from mul-

tiple images of the object taken simultaneously from different viewpoints. 1 This process is usu-
ally performed in three steps. First, sets of object features are independently found in each

image. An object feature is a visually distinctive characteristic that can be reliably detected

from different viewpoints. The edges and corners of surface markings are often used as
features. Next, features are matched across the images. The last step is to estimate the three-

dimensional location of the feature by triangulation. The use of two or more views to infer

three-dimensional structure and shape is called stereo vision. Considerable research has been

directed towards methods that rely on two cameras. Recently, a number of papers have pointed

out the advantages of introducing a third camera. 2-11

This paper addresses the matching problem for particles. The particles to be viewed are
assumed to be small spheres with a size near the resolution limit of the camera. For our model,

we will assume that particles appear as points in an image. Our problem is to find points in two

or more different images that are projections of the same particle. This presents a dificult

matching problem, because all image points look alike. Further, neighboring image points may
lie at disparate depths. As a consequence, stereo matching algorithms that rely on surface con-

tinuity or the appearance of distinctive markings are inappropriate for particle matching.

We present a general algorithm for matching image points in three views. The method

relies solely on geometric constraints based on the camera arrangement. In previous formula-
tions of the trinocular matching algorithm, one image was used to verify the consistency of

possible matches between points in the other two images. Our approach generalizes this stra-

tegy by considering all pairwise matches between points in all images. The matching problem

is shown to be equivalent to a search for edges contained in all perfect matchings of a bipartite

graph. The bipartite graph links points between two images that satisfy a geometric con-

sistency test. To take maximal advantage of the geometric constraints, three such problems

must be solved. Our algorithm employs an iterative search to find certain matches. The algo-

rithm was tested with synthcticalv gencrated particlc images. The results show that it finds
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significantly greater numbers of matches than earlier methods when matching uncertainty is

high.

An attractive property of the algorithm is its graceful degradation in response to image
distortion and modeling error. Although measurement errors may prevent successful matching,
wrong matches can almost always be avoided if the error in the image position of a particle can

be bounded. Thus, noise can cause a loss of acuity but should not cause the introduction of

gross misinformation that could result from incorrect matching. The density of matches
obtained by the method can be optimized by regulating the number of particles seeded in the
volume and by selectively arranging the cameras to minimize ambiguity in the matching pro-

cess. The method can be simply extended to match image streaks formed by using long expo-

sure views of moving particles.

2. Three Camera Correspondence

Before describing point matching among three views, we consider stereo matching of
points between two views. The stereo correspondence problem is facilitated by geometric con-
straints when the relative positions and orientations of the cameras are known. Given the posi-

tion of a point in one image, its location in a second image is known to lie on a line. As pic-
tured in Figure 1, a three-dimensional particle P that projects to point pr in the right image is

known to lie on the ray originating at the camera center, c,, and passing through the image at

p,. The epipolar line is defined to be the locus of points on the left image to which the ray C",P

projects. Given the position and orientation of the left camera with respect to the right, we can
confine our search for correspondences to the epipolar line. 12 The epipolar line is the intersec-
tion of the image plane with a plane defined by the two camera centers and the image point p,.

This plane is called the epipolar plane. Every particle that lies in the epipolar plane defined by
(c,,ct,p,) will appear as a point on the epipolar line in the left image and could be consistently

matched top,. If there is a single particle in the epipolar plane, then there will be a single con-
sistent point in the left image and it can be unambiguously matched to p,. When two or more

particles lie on an epipolar plane, additional constraints must be brought to bear on the match-

ing process.

A third camera provides additional information that can be used to discriminate among

the consistent match points.2-11 Figure 2 illustrates the mutual constraints among three images.
Consider the pair of points (pl,,p,) selected from the left and center images, respectively.

Assume that both points lie on the epipolar line defined by the other so that they could con-
sistently be matched. If p, and p,. correspond to the same particle, then their common match in

the right image must lie at the intersection of two epipolar lines. The two points define
indepcndent epiprolr constraints in the righi irn:igc. If therc is no point at the intersection, then
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Pl, can be eliminated from consideration as a candidate match for p,. When there is a point p,,

at the intersection of the epipolar line in the right image, then we say the set of points

(Pi,,Pc.P,) is a consistent triplet. We define a consistent triplet as a set of three points, one

from each image, such that each point lies on the epipolar line defined by the other two points.

The appearance of a point at the intersection of the epipolar lines in the right image is a

necessary but not a sufficient condition to infer correspondence. A potential ambiguity arises

when three particles lie along three image rays that intersect at a point. Figure 3 demonstrates

how three image points might be falsely interpreted as projections of a particle located at the

intersection of the rays. However, when this occurs there must be more than one consistent tri-

plet that includes p,,. (We assume all points are visible in all views.) If there is a single triplet

of points (pt,,PC,,P,,) containing p', among the set of all triplets satisfying the three camern epi-

polar constraints, then we can be certain that the three points correspond to the same particle.
We call such a triplet a matched triplet. Whenever a matched triplet is found, all other con-

sistent triplets containing p,, and Pr, can be eliminated from consideration. This may enable

new matched triplets to be declared. By iteratively searching for matched triplets and remov-

ing impossible contenders from the set of consistent triplets, the number of matched triplets

may successively grow. This process can continue until no new matched triplets are found on

an iteration.

We illustrate the utility of excluding impossible triplets using the particle distribution pic-

tured in Figure 3. The three particles appear as points Pl,, pt,, and Pt, in the left image. In the

center image the three points are labeled Pc,, pc2, and PC,. And in the right image they are

called p,,, p,,, and p,,. From the three camera epipolar constraints the set of consistent triplets

is restricted to

a (Pi,,Pc,,Pr)

b (Pi3 )PC,Pr2)

d (pi,P,p r,

Because b is the only triplet among the consistent triplets that includes pl,, we know that it is a

matched triplet. This allows us to eliminate d from the set of possible triplets, because pc, has

been associated with a matched triplet and hence, cannot correspond to any other point. This

leaves only a with pl, as a member and only c with p,,. Consequently, we can identify a, b, and

c as matched triplets.
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The selection of matched triplets from among the set of consistent triplets relies on a

uniqueness assumption. We assume that every image point has exactly one correct match in

every other image. If there is only one consistent triplet containing a point, then this triplet

must contain the correct matches for that point. Thus, a consistent triplet can be determined to

be a matched triplet if any of the three points appears in no other consistent triplet. Once the

triplet is confirmed as a set of matching points, no member of the triplet can be matched to any

other point. Therefore, all other triplets containing the matched points can be deleted from the

set of consistent triplets.

For the problem at hand, it is not even necessary to uniquely determine all three points in

a match triplet. The 3-dimensional location of a particle can be estimated knowing its projec-

tion in only two images. Hence, we can recover a particle's location if we can determine with

certainty any two members of its match triplet. It is still desirable to find all three members
whenever possible, because our estimate of particle position will likely be improved with the

redundant information provided by a third point. However, the set of consistent triplets may

only provide enough information to determine two of the three correspondents. We illustrate

this situation with the following set of consistent triplets:

a (P 1 ,PciPr,)

b (Ptl,,,p,,)

C (Pi2 ,Pc2tPr1)

d (Pi2,Pc,,Pr,)

Only consistent triplets a and b contain pl,. In both of these triplets p,, is matched with Pc,.

This pairwise match can be determined even though the correspondent in the right image can-
not be discerned. Combinations of consistent triplets similar to this arise when image locations

are inexactly known. If the epipolar constraint is modified to tolerate image measurement

errors, then one arrangement that could lead to the set above is illustrated in Figure 4. In the

next section we discuss adaptations necessary to accommodate imaging errors.

Our matching strategy is to search for pairs of matching points. For each pair of images,
we collapse the set of consistent triplets into the set of all possible point pairs by dropping the

entry from the third image out of every triplet. There are three pairwise combinations of three

images, so we have three matching problems to solve. For the moment, we concentrate on

solving each of these problems separately.

The set of possible matches between points in two images corresponds to a bipartite

graph, where the vertices of the graph arc image points. A vertex belongs to one of two
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disjoint sets based on the image in which the point resides. Edges connect points across the

two sets. Two points are connected if there is at least one consistent triplet containing both

points.

A perfect matching in a bipartite graph is defined to be a subset of the edges such that

every vertex is connected to exactly one other vertex. 13 The set of edges that link correspond-

ing points in the two images defines one perfect matching. There must be exactly one such

edge for each point because we assume that all particles are visible in all images. Unfor-

tunately, there may be many possible perfect matchings. We need to find edges that belong to

all possible perfect matchings. We can state with certainty that points connected by these

edges correspond to the projections of the same particle in 3-dimensional space.

Given a bipartite graph that contains a perfect matching, any vertex with a single edge

incident on it must belong to all perfect matchings. For our problem, the two vertices c,-d-
nected by the edge represent points in two images that correspond to the same particle. Once a

correct match is determined, it can be recorded and both vertices and the edge that connects

them can be deleted from the graph. When a vertex is deleted, all other edges incident on this

vertex can also be deleted. None of these edges, called forbidden edges, can belong to any P r-

fect match. When a forbidden edge is deleted in this fashion, the number of edges incident on

some vertex remaining in the graph is reduced by one. If there remains only one edge incident

on the vertex, then it too can be matched. In this way, correct matches can be successively

found and removed from the graph. The process ends when no more vertices of degree one are

left in the bipartite graph.

There exist more general methods to eliminate forbidden edges from a bipartite graph. 13

These techniques are able to find forbidden edges not found by our method. Deletion of these

edges may, in turn, lead to the discovery of more correct matches. The more general process of

detecting forbidden edges may lead to exponentially complex searching and hence is impracti-

cal when large numbers of particles are used. We will be content to detect forbidden edges

only when they are incident on matched vertices.

To this point, we've treated the three bipartite graphs as independent. However, the edges

are derived from a single set of consistent triplets and whenever a edge between two points is

forbidden, then all triplets containing the pair of vertices connected by the edge can be elim-

inated. Thus, deletion of an edge in one bipartite graph permits at least one edge in each of the

three bipartite graphs to be deleted.
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3. Ambiguity and Error

The camera models required to calculate the epipolar lines must be estimated and conse-

quently contain error. Image discretization and sensor distortion also contribute noise to the

measurements. Because of this error, we must extend the the epipolar line to be a narrow band

and accept all points within this band as consistent with the epipolar constraint.

An important property of the approach outlined above is its resilience to distortion of

image positions. If the error in image location can be bounded, then deviations should not con-

tribute to the mismatching. Matching errors can only occur when

(a) the correct triplet is not among the set of possible matches

and

(b) there is at least one set of three image points consistent with the geometric con-

straints that are not projections of the same particle.

There are two conditions which may cause the correct match to be absent from the set of candi-

date matches. The correct point may not be visible or its location may be so severely perturbed

by error that it violates the epipolar constraint. A particle may not appear on the image

because low contrast and noise hamper discriminability, it is out of the field of view, or it is

occluded by another particle. With proper lighting and camera positioning the first two situa-

tions can be avoided. If two particles happen to lie on a ray passing through a camera center,

the particle nearer the camera will hide the particle to the rear. The single image point will

consistently match points corresponding to the occluded and occluding particles in the other

two images. Since it actually represents two physical points, either of these choices would be

correct. If this dual point is matched to one of its two correspondents, it will be eliminated

from consideration for the seccnd. This will leave a point with no correct match and it could

potentially be coupled with a geometrically consistent, but invalid point. This problem could

be avoided by strengthening the matching criteria. If we require that both of the points to be

matched have the other as the sole candidate among all consistent triplets, then the dual point

will not be matched and it will always provide contention against incorrect matches. However,

strengthening the matching criteria can lead to substantial reduction in the total number of

matches. We will assume that all points are visible in all views, recognizing that the rare event

of particle occlusion could possibly lead to a matching error.

The distortion of the image location of particles is incorporated into the epipolar test to

guarantee that the correct match is always acceptable. If the position distortion can be

bocnded, then the algorithm can be adjusted so that the correct match is guaranteed to satisfy

the epipolar constraints. Consequently, the correct match will always provide competition

against incorrect matches.
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Clustering and coincidental alignment of particles can always create ambiguity in the

matching process. Matching errors will not be made, but information may be lost due to the

inability to discriminate between plausible candidates. The problem is worsened as the magni-

tude of errors to be accommodated grows. Let the displacement of a particle from its epipolar

line be bounded by E. The single error term, E incorporates distortion from the nominal image

position caused by optical and discretization error and error in the epipolar line due to inaccu-

racies in the camera models. To assure that the correct point is considered, any point lying

within F of the epipolar line must be accepted as a possible match. All points in a 3-

dimensional wedge will project to image locations within of the epipolar line. The wedge of

confusion can be obtained by rotating the epipolar plane about an axis located at the image

center and parallel to the epipolar line. The rotation must extend E above and below the epipo-

lar line on the image.

For a triplet to consistently satisfy the broadened acceptance criteria when accommodat-

ing error, each point must lie within e of the epipolar lines defined by the two other members of

the triplet. The region of acceptance on the image is a trapezoid centered on the intersection of

the epipolar lines. The area of 3-dimensional space that projects within the admissible tra-

pezoid image is defined by the intersection of two wedges. A confound exists whenever a

point lies within the skewed pyramid formed by intersecting the two wedges. Figure 4 illus-

trates an arrangement of two particles that leads to an unresolvable ambiguity in the rightmost

image. Either point in the right image could be consistently associated with points Pi, and Pc,

in the left and center images. Either point could also be associated with points pl, and Pc,.

There is insufficient information to match p,., or Pr to points in either the left or right images.

The likelihood of an ambiguity increases with the density of points and the size of acceptance

region. The volume of the wedge intersection is determined by the error tolerance and the

angle between the epipolar lines. More nearly parallel epipolar lines will lead to larger regions

of intersection.

Careful arrangement of the cameras can contribute to favorable conditions for matching.

The two epipolar lines in the right image will be parallel whenever the point to be matched lies

on the plane defined by the three camera centers. In this situation the third camera provides no

additional constraint. If the cameras are arranged so that the plane of the camera centers lies

outside the sampled volume, then the epipolar lines can never be parallel.

4. The Three-Camera Matching Algorithm

The first step in the matching algorithm is to determine all consistent triplets. Recall that

a triplet of image points is consistent if each point lies sufficiently close to the epipolar lines

defined by the other two points. The criteria for nearness to the epiplar line must bound errors
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due to modeling and measurement errors.

The second step is to create and initialize the data structures used in the iterative search

for matches. We assign an index i = 1,2 or 3 to each image. Consistent triplets will be ordered

by the image indices. Thus, the triplet (x,y,z) contains p 1, from image 1, p , from image 2, and

p3, from image 3. We define a circular ordering on the three images, so that each image has a

left neighboring image and a right neighboring image. The functions left (i) and right (i) return

the indices of the left and right neighboring images. For a pointpi, in image i, we want to find a

match Plft(i), in the image to the left and a match Prigh,(i), in the image to the right. We keep a

record of the status of these matches as the algorithm progresses. Initially, a point is labeled as

unmatched in both of its neighboring images. Whenever a match is discovered, the two match-

ing points are labeled matched in the appropriate images.

We also construct three adjacency lists for the hypergraph whose vertices are the points in

the three images and whose edges are the consistent triples. Each list corresponds to a vertex-

edge list. For each vertex j in image i, we associate all ordered triples that contain the value j

in the ih position.

The last step is to iteratively search the adjacency lists for each image looking for certain

matches in the other two images. When all consistent triplets on the adjacency for point pi,

contain the same point Pelft(i) in position left (i), then pi, is marked as matched in image left (i)

and Plft(i, is marked as matched in image i. Forbidden edges incident onplf(1), are eliminated

by traversing its adjacency list and deleting all consistent triplets with an entry other than j in

the it position. Because every consistent triplet is represented on the adjacency lists for all its

members, deletion of the triplet requires removal from all three adjacency lists. Finally, the

adjacency list for p, is examined for possible matches in image right(i). As with the left image,

whenever a match is found, the matched points are marked and forbidden edges are deleted.

The complete algorithm is presented in Figure 5.
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(1) Determine all consistent triplets;

(2) Mark all points as unmatched in all images;
Create adjacency lists for all points in images 1,2, and 3;

(3) Repeat

For each image i = 1,2,3

For each point pi, in image i

If pi, is unmatched in image left (i) and there is a single candidate Pt(i), in the

left (i)h position for all consistent triplets onpi, 's adjacency list

Then [

mark pi, as matched in image left (i);

mark Pip (i as matched in image i;

delete forbidden edges;
I

If P1, is unmatched in image right(i) and there is a single candidate Pnigk(i), in

the right(i)h position for all consistent triplets on pi,'s adjacency list

Then [

mark pi, as matched in image right(i);

mark Prigh, (i, as matched in image i:

delete forbidden edges;

EndFor

EndFor

Until no matches new found on one iteration

Figure 5. The three-camera matching procedure
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5. Testing The Method

T'..e matching algorithms were tested with synthetically generated images. The algo-

rithm presented in Figure 5 was compared w;th two versions of an approach that uses the third

image only to conlirm the consistency of matches between the two principal images. We will

refer to this as biased matching because points in all images are not treated with equal status.

The more complex form of this algorithm is presented in Figure 6. The simpler form of the

algorithm performs only one iteration of the repeat loop. Thus, it considers each point in image

1 only once.

Repeat

For each unmatched pointp 1, in the center image

For each unmatched point P2, nearp 1 's epipolar line in the left image

If there is at least one point in image 3 satisfying the epipolar constraints for

PI, and p2

Then let P2, be a candidate match set forp:

EndFor

If p, has a single candidate match P2,

Then markpI, and p2, as matched

EndFor

Until no points matched on this iteration

Figure 6. The iterative version of the biased three-camera matching procedure.

The use of synthetic images enabled us to examine the performance of the iterative

matching scheme with varied amounts of controlled error. Synthetic models of particle distri-

butions were created by randomly selecting points in a unit volume. The modeled particles

were projected onto three image planes. Cameras were modeled as ideal pinhole devices. The

camera focal lengths could be set to any value, but were assumed to be the same for the three

cameras. The positions of the cameras relative to the observation space could be adjusted by

the experimenter. Camera gaze was automatically determined so that the optic axis passed

through the center of the volume. The imaige coordinates of points in the world were



-12-

calculated using perspective projection. A sample model and the corresponding images are

graphically displayed in Figure 7.

Error was introduced into the image position data by surrounding image points with a cir-

cle of uncertainty. The matching algorithm assumed that the true image value could be located

anywhere within a circle of radius F. All sources of error were lumped into the single error

term, E. Any point within E of an epipolar line was considered to satisfy the epipolar constraint.

For the experiments reported here, we positioned the cameras along the axes of the world

coordinate system located at the center of the volume bounding particle positions. Cameras

were placed at a distance of 2 from the origin in units normalized for the dimension of the

observation space. Camera gaze was automatically directed toward the origin. Consequently,
each image plane was parallel to a side of the bounding volume. The focal lengths of the cam-

eras were all set to .05. This created images roughly equivalent to that obtained with a 35mm

camera observing a one meter volume positioned to fill the field of view.

The matching algorithms were tested with a simulated volume containing 100 particles.

Values of E were chosen to approximate image resolutions between -a- and
25 500

The results for the three matching techniques are displayed in Figure 8. The number of

correct, unambiguous matches determined by each method is graphed in Figure 8.a. Each data
point plotted on the graph was averaged over 5 tests. The simulation experiments highlighted

the robustness of the three camera matching strategy. No matching errors were made by any of
the methods in any experiment.

The results demonstrate the influence of uncertainty on matching. With small levels of
error, all of the methods found matches for all points. As the error increased, fewer matches

were determined. At high levels of error, few or no matches were unambiguously found. The

pattern of decline in number of matches with increasing error was similar for all three methods.

However, the unbiased matching technique tolerated significantly higher levels of error than

either of the biased methods. The iterative biased method led to a minor improvement over the
one-pass biased method.

The average execution times for the matching portions of the three algorithms (step 3 in

Figure 5), are graphed in Figure 8.b. The matching programs were implemented in Mathema-

tica on a Macintosh Ix. The graph shows that the improved performance of the unbiased

method comes with significant cost in efficiency.
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6. Three Camera Streak Matching

The matching algorithm can be simply extended to match streaks resulting from particle

motion over a long exposure view of a moving particle. Our approach is to approximate the

streak by a line segment connecting the endpoints of the streak. Streak endpoints can be deter-

mined by hand or by using a contour estimation algorithm. For reasonably short time intervals

the line segment will be a good approximation to particle velocity. A consistent triplet of

steaks consists of a coupled pair of consistent point triplets. The three camera epipolar con-

straints apply to both endpoints. Thus, a streak triplet is consistent if both endpoints of every

streak satisfy the epipolar constraints for the respective endpoints of the other two streaks.t A

match is declared whenever there is a single consistent match in another image.

As with point matching, mismatching can be avoided if the distortion of steak endpoints is

bounded. As a fortunate byproduct of matching streaks, the dual constraint provided by the

two endpoints reduces ambiguity in the matching process. A confound exists only when

another streak has endpoints that are confounded with both endpoints of the streak to be

matched.

7. Summary

Many of the tasks for which particle distribution and motion are important are conducted

as laboratory experiments. The three camera matching technique is well-suited for these appli-

cations. Cameras can be arranged to optimize discriminability and particle density can be con-

trolled to maximize the number of matches. The technique offers the potential to locate and

track large numbers of points in complex flows. The matching procedure is simple and remark-

ably robust.

References

1. J.R. Dhond and J.K. Aggarwal, "Structure from stereo - A review," IEEE Transactions

on Systems, Man, and Cybernetics, vol. 19, no. 6, pp. 1489-1510, November 1989.

2. V. J. Milenkovic and T. Kanade, "Trinocular vision using photometric and edge orienta-

tion constraints," Proceedings of the Image Understanding Workshop, p. 163, December

1985.

tA streak's endpoint in one image may correspond to either endpoint of a streak from another image.
Consequently, two endpoint orderings must be considered for each streak. If the a streak satisfies the
epipolar constraints in both of its orderings, then we will form two consistent streak triplets.



-14-

3. A. Gerhard, H. Platzer, J. Steurer, and R. Lcnz, "Depth extraction by stereo triples and a

fast correspondence estimation algorithm," 8th International Conference on Patte;n

Recognition, p. 512, October 1986.

4. M. Ito and A. Ishii, "Range and shape measurement using three-view stereo analysis,"

Proceedings Computer Vision and Pattern Recognition, p. 9, 1986.

5. M. Pietikainen and D. Harwood, "Depth from three camera stereo," Proceedings Com-

puter Vision and Pattern Recognition, p. 2, 1986.

6. M. Yachida, U. Kitamura, and M. Kimachi, "Trinocular vision: New approach for

correspondence problem," 8th International Conference on Pattern Recognition, p. 1041,

October 1986.

7. M. Yachida, "3-D data acquisition by multiple views," Robotics Research: Third Inter-

national Symposium, pp. 11-18, MIT Press, Cambridge, MA, 1986.

8. E. Gurewitz, I. Dinstein, and B. Sarusi, "More on the benefit of a third eye for machine

stereo perception," Proceedings of the Eighth International Conference on Pattern

Recognition, pp. 966-968, October 1986.

9. Y. Ohta, T. Yamaoto, and K. Ikeda, "Collinear trinocular stereo using two-level dynamic

programming," Proceedings of the Ninth International Conference on Pattern Recogni-

tion, pp. 658-662, November 1988.

10. S. Yokoi, G. Medioni, and R. Nevatia, "Segment-based trinocular vision," Proceedings

of the USA-JAPAN Symposium on Flexible Automation - Crossing Bridges: Advances in

Flexible Automation and Robotics, pp. 817-821.

11. Y. Kitamura, K. Masatoshi, and M. Yachida, "Trinocular vision using edge continuity and

local features," Systems and Computers in Japan, vol. 19, no. 12, pp. 12-23, December

1988.

12. B.K.P Horn, Robot Vision, The MIT Press, Cambridge, MA, 1986.

13. L. Lovasz and M.D. Plummer, in Matching Theory, Elsevier Science Publishers, Amster-

dam, The Netherlands, 1986.



P

C1

epipolar plane

Cr
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Figure 3. The three image points (Ps, ,PC2vPI) coincidentally satisfy the 3-camera
constraints for the phantom particle. Points should only be matched
when there is a consistent triplet containing a point that is a member of
no other consistent triplet among the set of possible matches.
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Figure 4. A configuration in which points can be matched only between the left and
center images. Because of measurement errors, the correspondent in the
right image cannot be determined.
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Figure 7. A simulated model of 100 particles and the corresponding images
from three orthogonal views.
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Figure 8 The results of experiments with synthetic particle images.


